I have always been puzzled about the way square roots calculations are taught in the elementary school. I remember a very cumbersome method in which each decimal was extracted with hard work.

In college, especially in my studies in computer science, I have not always been permitted to use a calculator during the examination time, so I learnt to calculate square roots with pencil and paper in a sufficiently approximate but fast way. In my case, I use to apply the Newton-Raphson algorithm to the equation *f(x) = x-root(K) = 0*

Suppose we need to calculate the root of a real number K. To calculate the root of K, first assume an educated guess x[0].

For small numbers my usual estimate is *x[0] = K/2*

Up to 1000, to start with *x[0] = 8+(K/40) *usually works well. In other cases, bearing in mind some perfect squares helps.

Once the first estimate is made, it is refined with the formula

*x[i+1] = (1/2) * (x[i] + (K / x[i]))*

For example, if you are on-site and you do not have a calculator near you and a worker asks you about the side of a slab of 500 sq meters you know that the side L = root(500) = 10*root(5) = 10*x

then

*x[0] = 5/2 = 2.5* (error 12%)

*x[1] = 9/4 = 2.25* (error 1%)

*x[2] = 161/72 = 2.2361 ... *(error 0.002%)

therefore the side is L = 22,361 m

The difference for *root(780)* between the classic algorithm and the Newton-Raphson one is clear in the appended images below.

*Elementary school algorithm*

*Iterative algorithm*